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Symmetries of the Jahn Teller System and their Solvability
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Department of Physics, Faculty of Engineering University of Gaziantep, 27310 Gaziantep, Turkey

(Dated: October 15, 2004)

We present a method of obtaining the quasi exact solution of the Jahn Teller systems in the
framework of osp(2,2) superalgebra. The hamiltonian have been solved in the Bargmann-Fock
space by obtaining an expression as linear and bilinear combinations of the generators of osp(2,2).
In particulare, we have discussed quasi exact solvability of E × ε Jahn-Teller Hamiltonian.

PACS numbers:

INTRODUCTION

The Jahn-Teller (JT) distortion problem is an old one, dating back over sixty years [1]. Yet, even today, new
contributions to this problem are being made [2]. They appear, however, not to have been fully exploited in the
analysis of JT problem. The E ⊗ ε JT problem is a system with doubly degenerate electronic state and doubly
degenerate JT active vibrational state. The JT effect describes the interaction of degenerate electronic states through
non-totally symmetric, usually non-degenerate, nuclear modes. This effect plays an important role in explaining the
structure and dynamics of the solids and molecules in degenerate electronic states.

The studies of the JT effect led Judd to discover a class of exact isolated solutions of the model [2]. The complete
description of these solutions have been given by Reik et al[3]. They observed that the isolated solutions could be
obtained by using Neumann series of expansions of the eigenvectors in the Bargmann-Fock space described by the
boson operators. The same problem has been treated in[4].

On the other hand, the conception of quasi-exactly solvable (QES) systems discovered [5, 7, 8, 9] in the 1980’s, has
received much attention in recent years, both from the viewpoint of physical applications and their inner mathematical
beauty. The classification of the 2×2 matrix differential equations in one real variable possessing polynomial solution
have been described [6, 10]. The relevant algebraic structure of the E ⊗ ε JT system is the graded algebra osp(2, 2)
and in this poster, we present a quasi-exact solution of the E ⊗ ε JT Hamiltonian.

SYMMETRY PROPERTIES OF THE E × ε JAHN TELLER SYSTEM

In this section a group theoretical treatment of JT distortion, in general case of two-fold degenerate states of
various groups is provided. The JT interaction matrices and surface energies have been obtained by using symmetry
properties of the system[11]. Let us start by describing the Hamiltonian that generates Dℓ ⊗ Dℓ surface, where Dℓ

denotes the irreducible representation. The standard Hamiltonian may be written in the form

H = H0 +HJT (1)

where H0 describes free (uncoupled) electron/holes and their vibrational states and HJT is the Jahn-Teller interaction
Hamiltonian. It is known that the Hamiltonian of the JT coupling is invariant under the rotational operations of the
SO(3) group. The totally symmetric part of direct product of an irreducible representations of a finite group, which
describes the properties of the JT system can be expressed in the form of

[

Dℓ ⊗Dℓ
]

= Dℓ1 ⊕Dℓ2 ⊕ · · · ⊕Dℓn (2)

where ℓ is the angular momentum quantum number. Decomposition of
[

Dℓ ⊗Dℓ
]

implies that the JT Hamiltonian
can be written in the following way

HJT = Hℓ1 +Hℓ2 + · · ·Hℓn (3)

where Hℓi is the JT Hamiltonian and its invariant under the symmetry operations of the corresponding finite group,
for the 2ℓ+ 1 dimensional representation. As an example consider an icosahedral symmetric system. The symmetric
part of the Hg interaction is given by

[Hg ⊗Hg] = Ag ⊕Hg ⊕ (Hg ⊕Gg) (4)
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where Ag, Hg, and Gg are the irreducible representations of the icosahedral group Ih. Since Ih is a subgroup of O(3)
decomposition of the coupling of the ℓ = 2 state can be written as

[

D2 ⊗D2
]

= D0 ⊕D2 ⊕D4 (5)

and its Hamiltonian is given by

HJT = H0 +H2 +H4. (6)

The Hamiltonians Hi must be separately invariant under the symmetry group Ih. The symmetric part contains the
totally symmetric representation H0 = Ag can exactly be solved. Before going further we list the decomposition of
the symmetric products of the [E ⊗ E] JT interaction and corresponding symmetry groups

Oh : [E ⊗ E] = A1g ⊕ E; Th : [E ⊗ E] = Ag ⊕ E

D2p : [E ⊗ E] = A1 ⊕ E; C2p : [E ⊗ E] = A1 ⊕ E

where Oh, Th, D2p and C2p denotes octahedral, tetrahedral, dihedral and cyclic groups, respectively. In the following
section we discuss the construction of the E ⊗ ε JT Hamiltonian.

THE E ⊗ ε JAHN-TELLER HAMILTONIAN

The well-known form of the E⊗ε JT Hamiltonian describing a two-level fermionic subsystem coupled to two boson
modes has been given by Reik[3].

H = a+
1 a1 + a+

2 a2 + 1 + (
1

2
+ 2µ)σ0 + 2κ[(a1 + a+

2 )σ+ + (a+
1 + a2)σ−] (7)

where 1

2
+ 2µ is the level separation, κ is the coupling strength. The Pauli matrices σ±,0 are given by

σ+ =

[

0 1
0 0

]

, σ− =

[

0 0
1 0

]

, σ0 =

[

1 0
0 −1

]

. (8)

The annihilation and creation operators, ai and a+

i satisfy the usual commutation relations

[a+

i , a
+

j ] = [ai, aj ] = 0, [ai, a
+

j ] = δij . (9)

The number operator of the Hamiltonian (7), J1, represents the angular momentum of the system and is given by

J1 = a+

1 a1 − a+

2 a2 +
1

2
σ0. (10)

Note that J1 commutes with H and the eigenvalue problem of the angular momentum part can be easily solved and
it reads

J1 |ψ〉j+ 1
2

=

(

j +
1

2

)

|ψ〉j+ 1
2

j = 0, 1, 2 · · · (11)

with the eigenfunctions

|ψ〉j+ 1
2

= (a+

1 )jφ1(a
+

1 a
+

2 ) |0〉 |↑〉 + (a+

1 )j+1φ2(a
+

1 a
+

2 ) |0〉 |↓〉 . (12)

where |0〉 is the vacuum state for both bosons. Here |↑〉 and |↓〉 are the eigenstates of the σ0, φ1 and φ2 are arbitrary
functions of a+

1 a
+

2 . Because the operators H and J1 commute, the eigenfunctions (12) are also the eigenfunctions of
the Hamiltonian (7).Therefore we can write the eigenvalue equation,

H |ψ〉j+ 1
2

= E |ψ〉j+ 1
2

; E = 2ǫ+ j +
3

2
. (13)

The Hamiltonian H can be expressed in the Bargmann-Fock space by using the realizations of the bosonic operators

a+

i = zi, ai =
d

dzi

, i = 1, 2. (14)
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In this formulation, the Hamiltonian H consists of two independent sets of first order linear differential equations.
Substituting (12) and (14) into (7) and defining ξ = z1.z2 one can obtain the following two linear differential equations
satisfied by the functions φ1 and φ2:

[ξ
d

dξ
− (ǫ− µ)]φ1 + κ[ξ

d

dξ
+ (ξ + j + 1)]φ2 = 0; κ[

d

dξ
+ 1]φ1 + [ξ

d

dξ
− (ǫ+ µ)]φ2 = 0. (15a)

These coupled differential equations represent the Schrödinger equation of the E ⊗ ε JT system in Bargmann’s
Hilbert space and its isolated exact solution have been obtained by Reik[3]. In this poster we follow a different
strategy to solve the Hamiltonian(7) and we show the Hamiltonian possesses osp(2, 2) symmetry.

TWO-BOSON ONE FERMION osp(2, 2) SUPERALGEBRA

In order to construct osp(2, 2) superalgebra let us start by introducing three generators of the su(1, 1) algebra,

J+ = a+

1 a
+

2 , J− = a2a1, J0 =
1

2

(

a+

1 a1 + a+

2 a2 + 1
)

(16)

These are the Schwinger representation of su(1, 1) algebra and its number operator is given by,

N = a+

1 a1 − a+

2 a2 (17)

which commutes with the su(1, 1) generators. The superalgebra osp(2, 2) might be constructed by extending su(1, 1)
algebra with the fermionic generators. These are given by

V+ = f+a+

2 , V− = f+a1, W+ = fa+

1 , W− = fa2 (18)

where f+ and f are fermions and they satisfy the anticommutation relation

{

f, f+
}

= 1 f = σ−, f+ = σ+, ff+ − f+f = σ0. (19)

The superalgebra osp(2, 2) can be constructed with the generators (16) and (18), as it is discussed in[12]. The total
number operator J of the system and it is given by

J =
1

2
N +

1

2

(

f+f − ff+
)

. (20)

The generators of the osp(2, 2) superalgebra satisfy the following commutation and anticommutation relations:

[J+, J−] = −2J0, [J0, J±] = ±J±, [J, J±] = 0, [J, J0] = 0

[J0, V±] = ±
1

2
V±, [J0,W±] = ±

1

2
W±, [J±, V∓] = V±, [J±,W∓] = W±,

[J,W±] = −
1

2
W±, [J, V±] =

1

2
V± [J±, V±] = 0, [J±,W±] = 0 (21)

{V±,W±} = J±, {V±,W∓} = ±J0 − J {V±, V±} = {V±, V∓} = 0

{W±,W±} = {W±,W∓} = 0.

The Hamiltonian of a physical system, with an underlying osp(2, 2) symmetry, has been expressed in terms of the
operators of the corresponding algebra.

TRANSFORMATION OF THE OPERATORS

Transformation of the fermion boson representations of the osp(2, 2) algebra and its connection with the QES
systems can be done by introducing the following similarity transformation induced by the metrics

S = (a+
2 )−a

+

1
a1−σ+σ

− T = (a2)
a
+

1
a1+σ+σ

− . (22)
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These transformations lead to the single variable differential realizations of the osp(2, 2) superalgebra. Using the
operator S, the generators of osp(2, 2) takes the form:

J ′
+ = SJ+S

−1 = a+
1 J ′

− = SJ−S
−1 = a1(a

+
2 a2 + a+

1 a1 + σ+σ−)

J ′
0 = SJ0S

−1 =
1

2

(

2a+

1 a1 + a+

2 a2 + 1 + σ+σ−
)

J ′ = SJS−1 =
1

2
(−a+

2 a2 − σ−σ+)

V ′
+ = SV+S

−1 = σ+, V ′
− = SV−S

−1 = σ+a1 (23)

W ′
+ = SW+S

−1 = σ−a
+

1 , W ′
− = SW−S

−1 = σ−(a+

2 a2 + a+

1 a1 + σ+σ−)

The representations (23) of osp(2, 2) can be characterized by a fixed number a+

2 a2 = −j − 1.Here j takes integer or
half-integer values. Therefore the generators of the osp(2, 2) algebra can be expressed as single variable differential
equation in the Bargmann-Fock space and two component polynomials of degree j and j+1 form a basis function for
the generators of the osp(2, 2) algebra,

Pn+1,n(x) =

(

x0, x1, · · · , xn+1

x0, x1, · · · , xn

)

(24)

The general QES operator can be obtained by linear and bilinear combinations of the generators of the osp(2, 2)
superalgebra. Action of the QES operator on the basis function (24) gives us a recurrence relation, therefore, the
wavefunction is itself the generating function of the energy polynomials. Under the transformation T the generators
of the osp(2, 2) algebra take the form

J ′
+ = TJ+T

−1 = a+

1 (a1a1 + a+

2 a2 + 1 + σ+σ−) J ′
− = TJ−T

−1 = a1

J ′
0 = TJ0T

−1 =
1

2

(

2a+
1 a1 + a+

2 a2 + 1 + σ+σ−
)

J ′ = TJT−1 =
1

2

(

−a+
2 a2 − σ−σ+

)

V ′
+ = TV+T

−1 = σ+(a+
2 a2 + a+

1 a1 + 1 + σ+σ−) W ′
+ = TW+T

−1 = σ−a
+
1 (25)

V ′
− = TV−T

−1 = σ+a1 W ′
− = TW−T

−1 = σ−

This realization can also be characterized by a+

2 a2 = −j− 1 . The basis function of the realization is given by (24).

SOLVABILITY OF THE E ⊗ ε JAHN-TELLER HAMILTONIAN

It will be shown that our approach relatively very simple when compared previous approaches. The Hamiltonian
(7) can be expressed in terms of the generators of the osp(2, 2):

H = 2J0 + (
1

2
+ 2µ)(2J −N) + 2κ [V+ + V− +W+ +W−] . (26)

The general trend to solve a differential equation quasi exactly is to express the differential equation in terms of
the generators of a given Lie algebra having a finite dimensional invariant subspace and use the algebraic operations.
In the Bargmann-Fock space the Hamiltonian has two different realization, under the transformation S and T . The
first transformation by S leads to the following one variable differential realization:

H1 =

(

2x
d

dx
− j + σ+σ−

)

− (
1

2
+ 2µ)σ−σ+ + 2κ

[

σ+(1 +
d

dx
) + σ−(x+ x

d

dx
− j − 1 + σ+σ−)

]

(27)

and the second realization can be obtained by transforming the Hamiltonian by T :

H2 =

(

2x
d

dx
− j + σ+σ−

)

− (
1

2
+ 2µ)σ−σ+ + 2κ

[

σ+(
d

dx
+ x

d

dx
− j + σ+σ−) + σ−(1 + x)

]

. (28)

The eigenvalue problem can be expressed as

Hϕ(x) = Eϕ(x); ϕ(x) =

[

vn(x)
ωm(x)

]

(29)
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where vn(x) and ωm(x) are polynomials of degree n and m respectively. The action of the H1 on the basis function
ϕ(x) gives the following recurrence relation:

(2n− j + 1 − E)vn + 2κ(ωm +mωm−1) = 0

(2m− j −
1

2
− 2µ− E)ωm + 2κ(vn+1 + (n− j)vn) = 0 (30)

Similarly when the Hamiltonian H2 act on the basis function we obtain the recurrence relation:

(2n− j + 1 − E)vn + 2κ(mωm−1 + (m− j)ωm) = 0

(2m− j −
1

2
− 2µ− E)ωm + 2κ(vn + vn+1) = 0 (31)

It is requiring that the determinant of these sets must be equal to zero giving the compatibility conditions which
establish the QES system. According to the (24) one can construct QES system if n = m + 1. Here m takes the
values m = 0, 1

2
, 1, · · · , j. If Ej is a root of the recurrence relations (30) or (31) then the eigenfunction truncates for a

certain values of j and Ej belong to the spectrum of the Hamiltonian. The initial conditions of the recurrence relation
is given by

vm = 0; for j < m < 1 and ωm = 0 for j < m < 0. (32)

with this initial conditions solution of (30) the gives us the following relation for the energy when j = 0 :

E =
1

4

(

5 − 4µ±
√

64κ2 + (7 + 4µ)2
)

(33)

and for j = 1/2 :

E =
1

4

(

3 − 4µ±
√

32κ2 + (7 + 4µ)2
)

E =
1

4

(

7 − 4µ±
√

64κ2 + (7 + 4µ)2
)

(34)

The same energy eigenvalues can be obtained by using the recurrence relation (31). In this case eigenvalues shifted
E → E − 1 and j takes negative integer and half integer values.

CONCLUSION

It is well known that the exact solutions have a direct practical importance. We have presented the quasi-exact
solution of the generalized E ⊗ ε JT system. Our paper gives a unified treatment of some earlier works. The method
given here can be extended to other JT or multi dimensional atomic systems. The basic features of our approach is to
construct osp(2, 2) invariant subspaces. Furthermore, we have presented two different boson-fermion representations
and two classes of one variable differential realizations of osp(2, 2) algebra . In particular the solution of E ⊗ ε JT
system has been constructed.

The suggested approach can be generalized in various directions. Invariant subspaces of the multi-boson and multi-
fermion systems can be obtained by extending the method given in this paper. The method given here can be extended
to other JT or multi dimensional atomic systems.
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